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ABSTRACT

An algorithm is developed to obtain the grid sen-
sitivity with respect to design parameters for aero-
dynamic optimization. The procedure is advocating
a novel (geometrical) parameterization using spline
functions such as NURBS (Non-Uniform Rational B-
Splines) for de�ning the airfoil geometry. An interac-
tive algebraic grid generation technique is employed
to generate C-type grids around airfoils. The grid
sensitivity of the domain with respect to geometric
design parameters has been obtained by direct di�er-
entiation of the grid equations. A hybrid approach
is proposed for more geometrically complex con�gu-
rations such as a wing or fuselage. The aerodynamic
sensitivity coe�cients are obtained by direct di�er-
entiation of the compressible two-dimensional thin-
layer Navier-Stokes equations. An optimization pack-
age has been introduced into the algorithm in order
to optimize the airfoil surface. Results demonstrate
a substantially improved design due to maximized
lift/drag ratio of the airfoil.

1. INTRODUCTION

An essential element in design and optimization
of aerodynamic surfaces is acquiring the sensitivity
of aerodynamic surface forces with respect to de-
sign parameters.1�3 Several methods concerning the
derivation of sensitivity equations are currently avail-
able. Among the most frequently mentioned are
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Direct Di�erentiation (DD), Adjoint Variable (AV),
Symbolic Di�erentiation (SD), Automatic Di�erenti-
ation (AD), and Finite Di�erence (FD). Each tech-
nique has its own unique characteristics. The Direct
Di�erentiation, adopted in this study, has the advan-
tage of being exact, due to direct di�erentiation of
governing equations with respect to design parame-
ters. There are two basic components in obtaining
aerodynamic sensitivity. They are: (1) obtaining the
sensitivity of the governing equations with respect to
the state variables, and (2) obtaining the sensitiv-
ity of the grid with respect to the design parame-
ters. The sensitivity of the state variables with re-
spect to the design parameters are described by a set
of linear-algebraic relation. These systems of equa-
tions can be solved directly by a LU decomposition
of the coe�cient matrix. This direct inversion proce-
dure becomes extremely expensive as the problem di-
mension increases. A hybrid approach of an e�cient
banded matrix solver with in
uence of o�-diagonal
elements iterated can be implemented to overcome
this di�culty.2

After reviewing relevant literature, it is apparent
that one aspect of aerodynamic sensitivity analysis,
namely grid sensitivity, has not been investigated ex-
tensively. The grid sensitivity algorithms in most of
these studies are based on structural design models.
Such models, although su�cient for preliminary or
conceptional design, are not acceptable for detailed
design analysis. Careless grid sensitivity evaluations,
would introduce gradient errors within the sensitivity
module, therefore, infecting the overall optimization
process. Development of an e�cient and reliable grid
sensitivity module with special emphasis on aerody-
namic applications appears essential.
Among two major classes of grid generation sys-

tems (Algebraic, Di�erential), algebraic grid genera-
tion systems are ideally suited for achieving this ob-
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jective. The explicit formulation, resulting in a fast
and suitable grid, enables direct di�erentiation of grid
coordinates with respect to design parameters.4;5 The
underlying e�ort here is to avoid the time consuming
and costly numerical di�erentiation. In addition, the
analytical derivatives are exact, a desirable feature
for sensitivity analysis. An important ingredient of
grid sensitivity is the surface parameterization. The
most general parameterization would be to specify
every grid point on the surface as a design parame-
ter. This, although convenient, is unacceptable due
to high computational cost. It is essential to keep
the number of parameters as low as possible to avoid
a surge on computational expenses. An analytical
parameterization, may alleviate that problem but it
su�ers from lack of generality. A compromise would
be using spline functions such as a Bezier or B-Spline
function to represent the surface. In this manner,
most aerodynamically inclined surfaces can be repre-
sented with only a few control (design) parameters.

2. SURFACE MODELING AND GRID

GENERATION

Among many ideas proposed for generating any
arbitrary surface, the approximative techniques of
using spline functions are gaining a wide range of
popularity. The most commonly used approxima-
tive representation is the Non-Uniform Rational B-

Spline (NURBS) function. They provide a powerful
geometric tool for representing both analytic shapes
(conics, quadrics, surfaces of revolution, etc.) and
free-form surfaces.6 The surface is in
uenced by a set
of control points and weights where unlike interpo-
lating schemes the control points might not be at the
surface itself. By changing the control points and
corresponding weights, the designer can in
uence the
surface with a great degree of 
exibility without com-
promising the accuracy of the design. The relation for
a NURBS curve is

X(r) =
nX
i=0

Ri;p(r)Di i = 0; ::::; n (1)

Ri;p(r) =
Ni;p(r)!iPn

i=0Ni;p(r)!i

where X(r) is the vector valued surface coordinate in
the r-direction, Di are the control points (forming a
control polygon), !i are weights, Ni;p(r) are the p-th
degree B-Spline basis function, and Ri;p(r) are known
as the Rational basis functions.
Figure 1 illustrates a seven control point represen-

tation of a generic airfoil. The points at the leading
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Figure 1: Seven control point representation of a
generic airfoil
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Figure 2: Critical fuselage cross-sections

and trailing edges are �xed. Two control points at
the 0% chord are used to a�ect the bluntness of the
section. Similar procedure can be applied to other
airfoil geometries such as NACA four or �ve digit se-
ries. The choice for number of control points and
their locations are best determined using an inverse
B-Spline interpolation of the initial data.6 The al-
gorithm yields a system of linear equations with a
positive and banded coe�cient matrix. Therefore, it
can be solved safely using techniques such as Gaus-
sian elemination without pivoting. The procedure
can be easily extended to cross-sectional con�gura-
tions, when critical cross-sections are de�ned by sev-
eral circular conic sections, and the intermediate sur-
faces have been generated using linear interpolation
as shown in Fig. 2. Increasing the weights would
deform the circular segments to other conic segments
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Figure 3: Sample C-type grid

(elliptic, parabolic, etc.) as desired for di�erent 
ight
regions. In this manner, the number of design param-
eters can be kept to a minimum, which is an impor-
tant factor in reducing the optimization costs.
The algebraic grid generation system, used in this

study, is an explicit mathematical expression of a
physical domain as a function of a computational
domain. A methodology based on separating the
boundary de�nition from the interior de�nition is es-
tablished. The interior is then de�ned as a function
of information on the boundaries such as position,
surface derivatives, and an independent variable. An
example of such formulation with �rst-order surface
derivatives is called Two-Boundary Grid Generation

(TBGG) technique.7 This, matches both the func-
tion and its derivative at the boundaries. Figure 3
illustrating the resultant sample grid for the airfoil
geometry using this technique.

3. FLOW ANALYSIS AND SENSITIVITY

EQUATION

3.1 Analysis

The two-dimensional thin-layer Navier-Stokes
equations can be represented as

1

J

@Q

@t
= R(Q) Q =

8><
>:

�

�u

�v

e

9>=
>;
i;j

: (2)

Here, R is the residual and J is the transformation

Jacobian

J =
@(�; �)

@(x; y)
: (3)

The residual R can be expressed in generalized curvi-
linear coordinates (�; �) as,

R = �
@�F

@�
�

@(�G� �Gv)

@�
(4)

where �F and �G are the inviscid and �Gv is the viscous

uxes.
The equations are solved in their conservation form

using an upwind cell-centered �nite-volume formula-
tion. A third-order accurate upwind biased inviscid

ux balance is used in both streamwise and normal
directions. The �nite-volume equivalent of second-
order accurate central di�erences is used for viscous
terms. The resulting discretization represents the
residual, R(Q), at each cell depending locally on val-
ues of Q at nine neighboring cells such that

Ri;j(Q) = Ri;j(Qi;j;Qi;j�1;Qi;j+1;Qi;j�2;Qi;j+2;

Qi�1;j;Qi+1;j;Qi�2;j;Qi+2;j): (5)

The discretized governing equations are implicitly
advanced in time using Euler implicit method which
is unconditionally stable for all time steps according
to Fourier stability analysis. An iterative approxi-
mate factorization (AF) algorithm have been chosen
to advance the solution in time until

R(Q�) � 0 (6)

where Q� are the steady-state values of the �eld vari-
ables. The boundary conditions are implicitly imple-
mented within the governing equations. The airfoils
surface is considered to be impermeable and adia-
batic. A standard no-slip boundary condition with
zero surface velocity has been selected. The pres-
sure at the surface is evaluated using a zeroth-order
extrapolation from the interior cells. The density is
then calculated using the state equation.

3.2 Sensitivity

For a steady-state solution (i.e., t!1), Eq.(6) is
reduces to

R(Q�(P);X(P);P) = 0 (7)

where the explicit dependency of R on grid and vec-
tor of parameters P is evident. The parameters P
control the grid X as well as the solution Q�. The

fundamental sensitivity equation containing
n
@Q�

@P

o

3



and described by Taylor et al.2 is obtained by direct
di�erentiation of Eq.(7) as"

@R

@Q

#�
@Q�

@P

�
+

"
@R

@X

#�
@X

@P

�
= 0: (8)

It is important to notice that Eq.(8) is a set of

linear algebraic equations , and the matrices
�
@R
@Q

�
and

�
@R
@X

�
are well understood. The vector quantityn

@Q�

@P

o
is the solution to Eq.(8) given the sensitivity

of the grid with respect to the parameters,
n
@X
@P

o
. A

direct chain rule di�erentiation of
n
@X
@P

o
results in

�
@X

@P

�
=

"
@X

@XB

#�
@XB

@P

�
(9)

where XB designates the boundary coordinates. The

vector
n
@XB

@P

o
represents the boundary sensitivity

which is directly related to boundary parameteriza-
tion, discussed previously. It has the importance of
being one of the dominant factors in calculating the
sensitivity of surface forces needed for optimization

process. The matrix
�
@X
@XB

�
is responsible for �eld

grid sensitivity with respect to boundary coordinates
and it is related to the rules which govern the grid
generation algorithm. For algebraic generation sys-

tems, the primary components of
�
@X
@XB

�
, are the

interpolation functions which distribute the interior
grid.
The sensitivity of the grid with respect to the

vector of design parameters XD = fXi; Yi; !ig
T

can be obtained by direct di�erentiation of the grid
equations.5 As a consequence of using algebraic grid
generation technique in which the boundary grid has
the dominant e�ect on the interior grid, the bound-
ary grid sensitivity coe�cient would also be essential
in in
uencing the interior grid sensitivity coe�cient.
Therefore, evaluation of the surface grid sensitivity
coe�cients are the most important part of the analy-
sis and are directly dependent on the surface parame-
terization. For practical purposes, the grid sensitivity
and orthogonality at the far-�eld boundary has been
ignored.

The 
ow sensitivity coe�cient
n
@Q�

@P

o
can now be

directly obtained using the fundamental sensitivity
equation, Eq.(8), as

�
@Q�

@P

�
= �

"
@R

@Q

#�1"
@R

@X

#�
@X

@P

�
(10)

provided that grid sensitivity,
n
@X
@P

o
, is known. The

Jacobian matrix, [@R
@X

] , can be evaluated by di�er-
entiating the discrete residuals Ri;j with respect to

four vertices of each cell. The quantity [@R
@Q

]�1 can be

obtained using a full matrix solver to account for all
the non-zero contributions outside of central band-
width. This, although convenient, is not practical for
Navier-Stokes equations due to large storage require-
ments. An alternative would be the use of a hybrid
direct solver with conventional relaxation strategy.2

3.3 Optimization

An objective of a multidisciplinary optimization of
a vehicle design is to extremize a payo� function com-
bining dependent parameters from several disciplines.
Most optimization techniques require the sensitivity
of the payo� function with respect to free parameters
of the system. For a �xed grid and solution condi-
tions, the only free parameters are the surface design
parameters. Therefore, the sensitivity of the payo�
function with respect to design parameters is needed.
The optimization problem is based on the method of
feasible directions and the generalized reduced gradi-
ent method.8 This method has the advantage of pro-
gressing rapidly to a near-optimum design with only
gradient information of the objective and constrained
functions required. The problem can be de�ned as
�nding the vector of design parameters XD, which
will minimize the objective function f(XD ) subjected
to constraints

gj(XD) � 0 j = 1;m (11)

and
Xl
D � XD � X

u
D (12)

where superscripts denote the upper and lower
bounds for each design parameter. The optimization
process proceeds iteratively as

Xn
D = Xn�1

D + 
�Sn (13)

where n is the iteration number, �Sn the vector of
search direction, and 
 a scalar move parameter. The
�rst step is to determine a feasible search direction
�Sn, and then perform a one-dimensional search in this
direction to reduce the objective function as much as
possible, subjected to the constraints.
The present optimization strategy is based on max-

imizing the lift coe�cient, CL, in response to surface
perturbation, subject to pre-determined design con-
straints. Upper and lower bounds set for each de-
sign parameter and the sensitivity derivatives of the
objective function, @CL

@XD

, and the constraint, @CD

@XD

,
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Figure 4: Optimization strategy loop

are obtained as previously described.2;3 Throughout
the analysis, the drag coe�cient, CD, is to be no
greater than the value of the initial design. The strat-
egy, illustrated in Fig. 4, requires that the grid and
grid sensitivity derivatives be provided dynamically
during the automated optimization process.

5. RESULTS AND DISCUSSION

5.1 Grid Sensitivity

The grid sensitivity of a generic airfoil with respect
to design parameters using the NURBS parameter-
ization is discussed in this section. The geometry,
as shown in Fig. 1, has seven pre-speci�ed control
points. The control points are numbered counter-
clockwise, starting and ending with control points (0
and 6), assigned to the tail of the airfoil. A total of 21
design parameters (i.e., three design parameters per
control point) available for optimizationpurpose. De-
pending on desired accuracy and degree of freedom
for optimization, the number of design parameters
could be reduced for each particular problem. For
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Figure 5: Grid sensitivity with respect to Y1

the present case, such reduction is achieved by con-
sidering �xed weights and chord-length. Out of the
remaining four control points with two degrees of free-
dom for each, control points 1 and 5 have been chosen
as a case study. The number of design parameters is
now reduced to four with XD = fX1; Y1; X5; Y5g

T ,
with initial values speci�ed in Fig.1. The non-zero
contribution to the surface grid sensitivity coe�cients
of these control points are the basis functions R1;3(r)
and R5;3(r). Figure 5 illustrates the �eld-grid sensi-
tivity with respect to design parameter Y1 when the
far-�eld boundary is placed one chord-length away
from the surface. The sensitivity gradients are re-
stricted only to the region in
uenced by the elected
control point. This locality feature of the NURBS pa-
rameterization makes it a desirable tool for complex
design and optimization when only a local perturba-
tion of the geometry is warranted. Similar results can
be obtained for design control point 5 where the sen-
sitivity gradients are restricted to the lower portion
of domain.

5



1

1

2

2

3

3

4

4

5

5 5

6

6 6

77

7

7

8

8

8

8
8

8

9

9

9

99

A

A

A

A

A

B

B

B

C

C
D

DEF

F 1.19292

E 1.1134

D 1.03387

C 0.95434

B 0.874811

A 0.795283

9 0.715755

8 0.636226

7 0.556698

6 0.47717

5 0.397642

4 0.318113

3 0.238585

2 0.159057

1 0.079528

Figure 6: Mach number contours (� = 0;M1 = 0:7)

5.2 Flow Sensitivity and Optimization

The second phase of the problem is obtaining the

ow sensitivity coe�cients using the previously ob-
tained grid sensitivity coe�cients. In order to achieve
this, according to Eq.(8), a converged 
ow �eld solu-
tion about a �xed design point should be obtained.
The computation is performed on a C-type grid com-
posed of 141 points in the streamwise direction with
101 points on the airfoil surface, and 31 points in
the normal direction. The far-�eld and outer bound-
ary were placed about 20 chord-length away from the
airfoils. It is apparent that such a coarse grid is in-
adequate for capturing the full physics of the viscous

ow over an airfoils. Therefore, it should be under-
stood that the main objective here is not to produce
a highly accurate 
ow �eld solution rather than to
demonstrate the feasibility of the approach.
The two-dimensional, compressible, thin-layer

Navier-Stokes equations are solved for a free stream
Mach number of M1 = 0:7, Reynolds number
Re1 = 106, and angle of attack � = 0�. The solution
is implicitly advanced in time using local time step-
ping as a means of promoting convergence toward the
steady-state. The residual is reduced by ten orders
of magnitude. All computations are performed on
NASA Langley's Cray-2 mainframe with a computa-
tion cost of 0:1209x10�3 CPU seconds/iteration/grid
point. Figure 6 demonstrates the Mach number con-
tours of the converged solution with the lift and drag
coe�cients of CL = 0:402 and CD = 0:063. Due
to surface curvature, the 
ow accelerates along the
the upper surface to supersonic speeds, terminated
by a weak shock wave behind which it becomes sub-

sonic. The sensitivity coe�cient,
n
@Q�

@T

o
, is obtained
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by previously described iterative strategy.2 The aver-
age relative error has been reduced by three orders
of magnitude. The sensitivities of the aerodynamic
forces, such as drag and lift coe�cients with respect
to design parameters fX1; Y1; X5; Y5g

T , are obtained
and results are presented in Table 1. An inspection
of Table 1 indicates the substantial in
uence of pa-
rameters Y1 and Y5 on the aerodynamic forces acting
on the surface. The upper and lower bounds for these
design parameters are assigned as

0:2 � X1 � 0:7; �0:1 � Y1 � 0:5;

0:2 � X5 � 0:7; �0:1 � Y5 � 0:2:

The optimum design is achieved after 17 optimiza-
tion cycles and a total of 8807 Cray-2 CPU seconds.
These high computational costs make minimizing the
number of design parameters in optimization cycle es-
sential. Table 2 highlights the initial and �nal values
of lift and drag coe�cients with a 208% improvement
in their ratio. Table 3 represents the initial and op-
timum design parameters with parameters Y1 and Y5
having the largest change as expected. The history of
design parameters deformation during the optimiza-
tion cycles appears in Fig. 7, where the oscillatory
nature of design perturbations during the early cycles
are clearly visible. Figure 8 compares the original and
optimum geometry of the airfoil.
Several observations should be made at this point.

First, although control points 1 and 5 demonstrated
to have substantial in
uence on the design of the air-
foil, they are not the only control points a�ecting
the design. In fact, control points 2 and 4 near the
nose might have greater a�ect due to sensitive na-
ture of lift and drag forces on this region. The choice
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of control points 1 and 5 here was largely based on
their camber like behavior. A complete design and
optimization should include all the relevant control
points (e.g., control points 1, 2, 4, and 5). For ge-
ometries with large number of control points, in order
to contain the computational costs within a reason-
able range, a criteria for selecting the most in
uen-
tial control points for optimization purposes should
be established. This decision could be based on the
already known sensitivity coe�cients, where control
points having the largest coe�cients could be chosen
as design parameters. Secondly, the optimum airfoil
of Fig. 8 is only valid for this particular example and
design range. As a direct consequence of the non-
linear nature of governing equations and their sensi-
tivity coe�cients, the validity of this optimum design
would be restricted to a very small range of the orig-
inal design parameters. The best estimate for this
range would be the �nite-di�erence step size used to
con�rm the sensitivity coe�cients (i.e., 10�3 or less).
All the airfoils with the original control points within
this range should conform to the optimum design of
Fig. 8, while keeping the grid and 
ow conditions
�xed.

Table 1 Aerodynamic sensitivity coe�cients

Generic Wing-Section Direct Di�erentiation

Design Parameters: @CL
@XD

@CD
@XD

X1 �0:297 �3:63x10�2

Y1 �5:107 0:549
X5 0:15 �2:04x10�2

Y5 2:609 0:287

Table 2 Comparison of initial and optimized
performance variables

Performance Initial Optimum Percent
Variables Design Design Change
CL 0:402 0:845 +110:1
CD 0:063 0:043 �31:7
Lift/Drag Ratio 6:38 19:65 +208

Table 3 Comparison of initial and optimized design
parameters

Design Initial Optimum Percent
Parameters Design Design Change
X1 0:5 0:374 �25:2
Y1 0:2 0:134 �33
X5 0:5 0:414 �17:2
Y5 0:05 0:069 +38

6. CONCLUSIONS AND

RECOMMENDATIONS

An algorithm is developed to obtain the grid sen-
sitivity with respect to design parameters for aero-
dynamic optimization. The algebraic Two-Boundary
Grid Generation (TBGG) scheme has been directly
di�erentiated with respect to design parameters.
This formulation has the bene�ts of being exact, ef-
�cient, and inexpensive. The airfoil is de�ned ge-
ometrically using the NURBS approximation of the
surface. A substantial increase in aerodynamic per-
formance variables enforces the feasibility of this ap-
proach for high level design and optimization.
It is evident that grid sensitivity plays a signi�-

cant role in the aerodynamic optimization process.
The algebraic grid generation scheme presented here
is intended to demonstrate the elements involved in
obtaining the grid sensitivity from an algebraic grid
generation system. Each grid generation formulation
requires considerable analytical di�erentiation with
respect to parameters which control the boundaries
as well as the interior grid. It is implied that aero-
dynamic surfaces, such as the airfoil considered here,
should be parameterized in terms of design parame-
ters. Due to the high cost of aerodynamic optimiza-
tion process, it is imperative to keep the number of
design parameters as low as possible. Analytical pa-
rameterization, although facilitates this notion, has
the disadvantage of being restricted to simple geome-
tries. A geometric parameterization such as NURBS,
with local sensitivity, has been advocated for more
complex geometries.
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Future investigations should include the implemen-
tation of present approach using larger grid dimen-
sions, adequate to resolve full physics of viscous 
ow
analysis. A grid optimization mechanism based on
grid sensitivity coe�cients with respect to grid pa-
rameters should be included in the overall optimiza-
tion process. An optimized grid applied to present
geometry, should increase the quality and conver-
gence rate of 
ow analysis within optimization cycles.
Other directions could be establishing a link between
geometric design parameters (e.g., control points and
weights) and basic physical design parameters (e.g.,
camber and thickness). This would provide a con-
sistent model throughout the analysis which could
easily be modi�ed for optimization. Also, the e�ects
of including all the relevant control points on the de-
sign cycles should be investigated. Another contribu-
tion would be the extension of the current algorithm
to three-dimensional space for complex applications.
For three-dimensional applications, even a geometric
parameterization of a complete aerodynamic surface
can require a large number of parameters for its de�-
nition. A hybrid approach can be selected when cer-
tain sections or skeleton parts of a surface are speci-
�ed with NURBS and interpolation formulas are used
for intermediate surfaces.
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